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A new way to evaluate phase-space volumes and inclusive spectra in the uncorrelated 
jet model is studied in detail and compared to the well-known Monte Carlo and saddle point 
techniques. The method is based on Fourier transformation of the phase-space volumes. 
Apart from the very low-energy region, where only phase spaces with two, three., or four 
particles contribute, the new method is superior in accuracy and/or computing time to all 
other methods. As an application we study the approach of the normalized x and y single- 
particle distributions to their respective scaling limits. 

1. INTR~OU~~ION 

In this paper we present a method’ for the accurate calculation at nonasymptotic 
energies of the transverse-momentum cutoff phase-space volume Q(q) and of inclusive 
quantities, especially single-particle distributions, connected to G(q) in the uncorrelated 
jet model (UJM) [2-4]. 

This model is of interest in all kinds of multiparticle production processes, where 
the single events are assumed to have jet structure. In the UJM the fully exclusive 
distribution for the production of N particles of four-momentum pi is given by 

q is the total four-momentum of the system, ptT = (p,“, + ~:,,)l/~, i.e., we choose the 
z-direction to coincide with the jet axis. For simplicity we assume that all particles 
have the same mass. The function f(pT) describes the transverse-momentum cutoff. 
In our numerical examples and the formulas we used 

f(pT) = exp[--hpTl, U-2) 

r After completion of the main part of our work we learned about a paper of J. Gasser Ill, 
where in principal the same method is worked out. The two papers differ, however, in many respects: 
we use different integration methods, and whereas our calculations are checked against Monte Carlo 
and saddle point calculations and are done with m = m, , the author of [I] made only a comparison 
to an asymptotic expression and used m = 1 GeV. Moreover, we calculate and check single-particle 
spectra, and are able to say where each method can be applied. 
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although the method is also applicable for other functionsf(p,) describing a cutoff. 
The transversely cutoff phase-space volume is then given by 

and the normalized single-particle distribution is 

F(Q, p) = 2 $ = K exp(-)cpT) Q(Q - P) 
Q(Q) ’ 

(1.3) 

where Q = (s1j2, 0). In principle all other inclusive quantities, e.g., two-particle correla- 
tions can be obtained in a similar way from G(q). 

There are essentially three possibilities to evaluate L?(q) or Q&q). 

(i) The Monte Carlo method. Provided one has enough computer time, one can 
calculate each G’,,,(q) with arbitrary precision [5]. The derivative with respect to any 
function of the integration variables can easily be performed; however, since the 
total number of events is then distributed over many bins, an essential loss in precision 
compared to the one for QN(q) cannot be avoided. The calculation of second- and 
higher-order derivatives, e.g., for invariant single- or two-particle cross sections, is, 
then (because there is too little computer time) in practice not feasible. At high energies, 
where more and more states with higher multiplicities can contribute to inclusive 
quantities, the whole procedure becomes clumsy, since the results for many different 
J’S?,,, have to be calculated separately and added up. Also, a deviation of the cutoff 
function f(& from the one for which the importance sampling originally was done 
cf(pd = exp(--hpT21 in Fl) d ecreases the statistics for high energies. 

(ii) Saddle point techniques and related statistical methods. The formula for 52,(q) 
[7] consists in an expansion in powers of l/W2 and is therefore most appropriate 
for big N values. To find the saddle point for general q-vectors one has to solve two 
nonlinear coupled equations, which reduce to one equation if qT = 0. Usually, even 
for values 4-r # 0 this procedure is adopted and subsequently one attaches a correction 
factor to the result. The method is therefore good for calculating !SN (q = Q), (IV), 
f2 and f3 at not too small values of s1i2 (Y > 3 GeV for pions). It is very fast on the 
computer; however, at small energies it is bad because the low N-values dominate and 
it is inappropriate for the calculation of single-particle spectra because of its deficien- 
cies in calculating phase-space volumes with qT # 0. 

(iii) The Fourier transform method. This method consists in evaluating a three- 
dimensional integral, which is abtained by Fourier transforming L?(q) or G&q) and 
subsequent inverse transformation. For given f(pT) the first integral has to be done 
only once for all q; then a twofold integration remains, which can be calculated at 
nonasymptotic as well as asymptotic energies, with great accuracy and taking little 
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computer time. However, when phase spaces for N = 2, 3, or 4 dominate one should 
go back to Monte Carlo methods. 

In Section 2 we shall describe the Fourier transform method in detail, as well as the 
numerical means to evaluate the integrals. The results for Q(q) as well as for single- 
particle distributions will be compared to the ones obtained from methods (i) and (ii) 
in Section 3. 

2. THE FOURIER TRANSFORM METHOD 

The basic equations of the Fourier transform method have been derived by Bassetto, 
Sertorio, and Toller [3]. The main purpose of their own and other [4] treatments was 
to obtain asymptotic expansions for Q(q), the single-particle distributions, etc., 
whereas we want to evaluate these equations numerically for finite, nonasymptotic 
values of the variables. 

Consider the Fourier transform 

Z(P) = 1 d% exp[&l Q(q) 

and the transform of the single-particle phase-space volume 

(2-l) 

z(P) = 1 da149 expWq1 Qdd 

s = VWh) ewWp - hl; 

then, because of Eq. (1.3), 

(2.2) 

z(p) = f (KM/N!) ZN(/?) = eXp(KZ@)) - KZ@) - 1. 

N=2 
(2.3) 

As a consequence of Lorentz invariance Q(q) depends only on the two variables 
qE = (q,,2 - qLE)liz and qT , where qL = qz and qT = (qs2 + qv2)lj2 are the total 
longitudinal and transverse momenta, and we have chosen the z axis so that it coin- 
cides with the jet axis. Correspondingly, Z@) also depends on two variables BE = iaE 
and flT only. Equations (2.1) and (2.2) can then be written as 

(2.4) 

and 

z(B) = 2~ 6 dp PJ~@TP) Ko@.d~2 + m2Y2) exp(--)cp). 

The inverse of the transformation Eq. (2.4) is given by 

(2.5) 
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As can be seen from Eqs. (2.3), (2.9, and (2.6) the numerical problem consists in the 
evaluation of a three-dimensional integral with highly oscillating complex integrands. 

For q = Q the flT integrand is less varying, since Jo(O) = 1, and therefore 

(2.7) 

On the other hand it is clear that large qT , because of the factor JO(&qT), will lead 
to numerical instabilities. 

The first step in the computation of the integrals (2.5) and (2.6) is of course to find 
out for what values of the integration variables one should expect the main contribu- 
tions. The integration path which is chosen for the aiE integration and the parameters 
involved, namely the mass m, the cutoff parameter h, and the constant K will play a 
role in this context. To be definite, we take in all calculations 

m = m,, X = 6.2 (GeV)-l, K = 36 (GeV)-2 (2.8) 

in agreement with the values chosen in [4]. We are free to shift the integration path in 
the complex aE plane to the right, the only singularity of the integrand being at 
0~~ = 0, namely, the logarithm contained in the K,, function of Eq. (2.5). The path 
we choose is parallel to the imaginary axis, i.e., we take a fixed Re 01~ = z > 0. 
Notice that, because the integrand is a real analytic function in 01~ for Re 01~ > 0, 
one has to consider only that part of the integration path which is in the upper half 
plane. The phase-space volume G’(q) is then 

We have calculated sZ(Q) for 1 GeV < C2 < 20 GeV with E = 0.1 and 1 .O (GeV)-I. 
While we get good agreement with other calculations (see also Section 3) for E = 
0.1 (GeV)-l, it seems to be impossible to get a reasonable result-at least with the 
same effort-for E = 1.0 (GeV)-l. In the following all calculations were therefore 
done with l = 0.1 (GeV)-l. 

In Figs. la and b we show the IgT integrand, 

G@T) = BJo@TqdZ& 7 QMPT) (2.10) 

for Several ol, and qT Values, where 

@T) = (I + flTj2 (2.11) 

is the Jacobian of the transformation & = x/(1 - x) of the interval 0 < /IT < co to 
0 < x < 1. It is evident from these curves that up to & = 30 (GeV)-l the integrand 
is nonnegligible. The (YE values were chosen from that 01~ range, which is important 
for the 01~ integration. The CxE integrand is shown in Fig. 2 for qE = 1, 3, and 20 GeV 
and several qr values. As expected from the singular behavior at C?+ = 0, the integrand 
is a rapidly decreasing function of Ima E, which is completely negligible above 

581/23/Z-8 
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FIG. 1. The real part (solid lines) and the imaginary part (broken lines) of the & inkgrand 
G&), Eq. (2.10); (a) at ‘LE = (0.1 + iO.052) (GeV)-1 and qT = 0 and 5 GeV; (b) at CQ = (0.1 +i1.477) 
(GeV)-1 and qT = 0. 

Zma, = 2 (GeV)-l. Moreover, one recognizes that it is easy to obtain an accurate 
result for high qE , whereas for low qE (qE < 3 GeV) the large positive and negative 
areas essentially cancel out, so that small inaccuracies in the integrand can spoil the 
result of the integration. Cancellations must occur, because as a consequence of four- 
momentum conservation only states with 

Nm < (q2)l12 (2.12) 

can contribute. For (q2)l12 < 2 GeV one can circumvent this difficulty by taking in 
Eq. (2.3) a sum which is limited by the maximally allowed N = NMAX instead of the 
full exponential. The procedure is not useful for (q2)li2 > 2 GeV. We have made a test 
with LJ (sliz = 3 GeV) where N MAX = 21 and found no difference in the two cases, 
whereas at s1J2 = 1 GeV (NIMAX = 7) the limited sum leads to much better results. 
With increasing N the calculation of the tite sum increases, however, the necessary 
computer time is considerable compared to that needed for the calculation of the 
exponential. 
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FIG. 2. The cuE integrand at qfi = 3 and 20 GeV for qT = 0 (solid lines) and qT = 1 GeV 
(dotted lines). The qE = 1 GeV, qT = 0 curve is a broken line; Re CQ = 0.1 @z%)-~. 

Being aware now of the relevant ranges in 01~ and ST we shall describe in the follow- 
ing the methods used to calculate the complex Bessel functions lo(w), K,,(w), the 
quantity z@), and finally, Q(q). 

2.1. The Bessel Functions Z,(w) and K,,(w) 
Since we need the Bessel functions for complex arguments we cannot make use of 

the well-known standard programs. Instead we have programmed the ascending 
series [8] 

Ko(~) = - [In 5 + Y] - f. w + fjl w ,$ f , (2.13) 

Z,(w) = iYoyg’ 

where y is the Euler constant, y = 0.577215..., and the asymptotic expansions 

(2.14) 

K,(w) w (--$r” e-w 11 - & + $$$ - 13i T8$5 + -..I, (2.15) 
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valid for ) arg w I < 3x/2 and 

IO(W) 
et0 

yiip 1 1 +&-t&&5+ (2.16) 

valid for 1 arg w j < 7r/2. With double precision variables (16 digits on the IBM 
370/158 computer) and a required relative accuracy of lo-lo one has to change at 
) w 1 = 9-10 for K,(w) and at 1 w I % 11-12 for Z,(w) from the small 1 w / representa- 
tions to the asymptotic expansions. At the matching point about 20-25 terms in the 
respective expansions have then to be calculated. A test for the Z,(w) program was the 
relation 

IO(W) = Jo(iw), ---rr < arg w < n/2. (2.17) 

It turns out that the asymptotic expansion Eq. (2.16) is inadequate near arg w N r/2. 
We have therefore replaced Eq. (2.16) for r/4 < arg w < x/2 by the corresponding 
asymptotic expansion for J,(w). 

2.2. The Fourier Transform z of the Single-particle Phase-space Volume 

The evaluation of Eq. (2.5) was performed using three methods: 

(I) The application of the trapezoidal rule for nK = 2K integration intervals to 

z = -(27r/X2) j’ d x 1 n xJ&& In x) Ko(aE’(ln2 x + m’2)1/2), (2.18) 
0 

where CQ’ = ol,/h, j&’ = /&/A, and m’ = mh. The sequence of integrals zK obtained 
for K = I,..., 8 was then used to accelerate the convergence of the integral with the 
Romberg method (see [9, IO] for a detailed description). This method corresponds 
to a polynomial extrapolation in hK = subinterval length = l/nK of the approxima- 
tion zK to the point hK = 0. 

(II) The same determination of the zK as in I, but subsequent acceleration of the 
convergence of the integral with the E algorithm [lo], which is the application of PadC- 
approximants to the series 

z(u) = Zl + g (Zj+1 - Zj) uj (2.19) 
j=l 

and its evaluation at u = 1. One starts with 

EK,-l = 0, EKO = zK (2.20) 

and then calculates 

cKZ = EK+l.Z-2 + kK+l,Z-1 - EK.C-l I-1. (2.21) 
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The resulting triangular table contains, for even 1 only, approximants to z which are 
diagonal PadC approximants for K = 1, 

%.2N = [ff, N] (u = I); 

whereasforK=M-N+ 1 > 1, 

(2.22) 

CM--N+l,2N = [NY Ml @ = lb 

(III) Here we obtained the z, from 

(2.23) 

z = (27r/X2) SW dp e-+J,(&‘p) Ko(aE’(p2 + m’2)1/2) 
0 

(2.24) 

using the Laguerre-Gauss integration method with n, = 2 and nK = 4 * (K - 1) 
points for K = 2,..., 11 [ll]. The method is especially designed for integrals over the 
range (0, co) and a weight factor e- p. Subsequently the E algorithm was applied, if 
necessary. 

Comparing the three methods, we can make the following statements. 

(i) Even with 256 integration points the trapezoidal rule without acceleration 
will give a result which is true up to only the first two digits or worse, while for 
Ima, < 2 (GeV)-l, & < 10 (GeV)-l the Laguerre-Gauss integration rule works with 
high precision, giving correctly the 8-10 leading digits for nK = 32, 36 and 40 without 
acceleration. 

TABLE I 

I(CQ = (0.1 + iO.05) (GeV)-r, A = 1.5 (GeV)-I); c = be/2a 

1 3.236243915... 2 
2 3.216989326... 4 
3 3.223684132... 8 
4 3.223862718... 12 
5 3.223779449... 16 
6 3.223769971... 20 
7 3.223772436... 24 
8 3.223773654... 28 
9 3.223773828... 32 

10 3.223773769... 36 
11 3.223773721... 40 

1.386402167... 2 3.342440919... 3.221399969... 3.223869250... 
2.223255642... 4 3.273132212... 3.223444567... 3.223822864.. 
2.702077489... 8 3.244970854... 3.223790558... 
2.962520940... 16 3.233275622... 3.223820014... 
3.098021271... 32 3.228233453... 
3.165709885... 64 3.225965375... 
3.198211711... 128 
3.213182044... 256 

Best values and number of points used to obtain them 

Method n CZ 

I 256 3.218955638 - i0.4234127367 
II 256 3.223822865 - iO.4245001998 
III 40 3.223773721 - i0.4244895469 

5f31/2312-9 
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(ii) The Romberg acceleration shifts the result in the right direction but normally 
does not even give the third digit correctly, whereas the E algorithm brings 3 to 4 
additional digits. 

(iii) At the boundaries of the relevant 01~ and /I, regions (ZWZQ w 2 (GeV)-l, 
rBT = 30 (GeV)-l) the zK sequence obtained with the Laguerre-Gauss method does not 
seem to converge, while the z,‘s from the trapezoidal rule do not oscillate very much 
around the true value z. Applying the E algorithm to both sequences leads, however, 
to the same result for the first 3 to 4 digits. 

In Table I we show the results for z at a typical point in the most relevant part of the 
(ImolE , /3=) plane. For small K the Laguerre-Gauss result is already better than that of 
method II, for which we show the E-algorithm table. Table II contains the results for z 
at extreme Zma, and /3= values, this time part of the E-algorithm table belonging to 
Re z, and method III is displayed. As a consequence of our numerical experiments 
we adopted method III for the following calculations, taking z = zg (G 32 points) 
for Zma, < 2 (GeV)-l, /3, -=c 10 (GeV)-l and performing the E algorithm for larger 
& values on the sequence z1 ,..., zl] (A 222 points). To give an impression of the 
function z we have drawn Figs. 3a and b. 

TABLE II 

Z(KE = (0.1 + i2)(GeV)-I, j?r = 30(GeV)-I); c = P/2n 

K 100~ Re z! nK lOOcRez~‘= cKO nK l K6 EKS EKlO 

1 - 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

.13.309134142... 2 

5.050597081... 4 

0.443955094... 8 

1.091066205... 16 

1.847716008... 32 

1.148064702... 64 

1.570435127... 128 

1.385918052... 256 

-8.906190943... 2 0.865125011... 1.446561195... 1.434069222... 

14.485811261... 4 1.465350474... 1.433341750... 

-7.485913060... 8 1.433824807... 1.433638563... 

3.764937754... 12 1.433267812... 

2.935261600... 16 1.433703798... 

-1.034031288... 20 

3.723713731... 24 

-0.315184860... 28 

2.629131290... 32 

0.678211632... 36 

1.882917526... 40 

Best values and number of points used to obtain them 

Method n 1OOcz 

I 256 1.288686345 - il.329409770 

II 256 1.434676601 - il.247092913 

III 222 1.434069222 - il.24504391 5 
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2.3. The Phase-space Volume Q(q) 

The remaining two integrations of Eq. (2.9) have been attacked with five different 
methods. 

(1) Direct application of the trapezoidal rule to the integrals without any trans- 
formation; the upper limit of the 0~~ integral was aE = (0.1 + i2) (GeV)-l and that of 
the /I, integral was /I, = 100 (GeV)-l. 

(11) Two Legendre-Gauss integrations with 32 points each, the first by trans- 
forming the interval [0, a] to [- 1, I] with 

y = (2/a)x -1, (2.25) 

the second by transforming the interval [a, co] to [-1, 1] with 

y = (x - 24/x, (2.26) 

where x was Ima, or /I, and a was chosen to be 0.2 (GeV)-l for Ima, and 2 (GeV)-1 
for& . At points with Imor, > 2 (GeV)-l or /& > 100 (GeV)-r the integrand was set 
zero to avoid errors from possibly bad z values. 

ImaE 
1 2 3 4 5 6 7 - 

[Gel’-‘] 

b) 

o- : ------y/f 
1 5 

-Ol- 
_____--- -------- 5[G;r’l 

__-- 
_--- ( 

___-*- 

FIG. 3. The Fourier transform z of the sin&particle phase-space volume, the real parts (solid 
lines) and imaginary parts (broken lines) are given for Re (I E = 0.1 (GeV)-1 in (a) at fixed & = 
0, 10 (MeV)-‘, the numbers on the curves indicate the fir values; (b) at fixed ImaE = 0, 1 (GeV)-I, 
the numbers on the curves indicate the ImnB values; the imaginary part for ImaE = 0 is zero. 
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(III) Transformation of the interval [0, co] to [0, l] with 

Jw = N + 4, (2.27) 

then trapezoidal integration in the y interval [0, y(u)], where a was chosen to be 
2 (GeV)-’ for Imae and co (GeV)-l for /3= . The integration intervals were divided 
into nK = 2” (K = l,...,. 8) subintervals and the obtained sequences of integral 
approximations were accelerated with the Romberg or E algorithms. 

(IV) Laguerrc-Gauss integration with n, = 2, n, = 4 . (K - l), K = 2,..., 9 
points after a scale transformation y = ax such that the highest x value was at the end 
of the relevant interval, i.e., a = 2/l 11.7514 for Zma, and a = 100/l 11.7514 for & . 
The sequences of integral approximations were then accelerated via E algorithm. 

(V) Laguerre-Gauss integration with 64 points after a scale transformation 
similar to that in IV. 

As a test we have calculated sZ(Q) for sliz = l-20 GeV with all 5 methods. The 
resulting G(Q) agreed within less than 0.5 % for all s112 3 5 GeV with increasing 

TABLE III 

Q(Q). Q = Wz, 0), K = 36 (GeV)-” 

Method 

SIP Fourier 
lGev1 transform 

Monte 
Carlo [4,6] 

Saddle 
point [7] 

Three terms of 
asymptotic 

expansion [4] 

1 2.509 x 10” 
2 6.295 x 10” 
3 1.388 x 108 

3.8 2.392 x 108 
4.8 4.316 x lo8 

6 7.907 x 108 
7 1.228 x 104 
8 1.820 x lo4 
9 2.596 x 104 

10 3.591 x 1w 
12 6.373 x lo4 
14 1.047 x 105 
16 1.619 x lo6 
18 2.391 x 1W 
20 3.400 x 105 

2.495 x 10e 1.088 x 102 
4.774 x 102 

1.292 x lo* 1.159 x 10s 
2.206 x lo3 2.092 x 108 
3.933 x 108 3.860 x 1Oa 

7.482 x 10s 
1.192 x 1W 
1.788 x 104 
2.569 x 104 
3.562 x lo-’ 2.509 x 10’ 
6.361 x 1W 4.679 x lo* 
1.044 x 105 7.956 x 10’ 
1.615 x lo5 1.264 x 105 
2.385 x lo5 1.905 x 105 

2.144 x lo5 3.391 x 105 2.753 x 105 

* The calculation of the 4096 z values for method II takes about $ hr on the IBM 370/158 com- 
puter. 
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agreement at higher energies (0.015 % at s’/* = 20 GeV). Only method I differed a 
little more from the average values. A stronger test for the efficiency of the methods 
was the low-energy calculation, of L?(Q), especially at s’/* = 1 GeV, where as explained 
already, strong cancellations occur and where we have, on the other hand, a rather 
accurate value for Sz from Monte Carlo calculations. With and without the finite 
sum trick, methods II and III lead to the best results. Although they are very different, 
methods II and III agree to less than 0.05 % in L?(Q) for s’/* > 4 GeV. Since method II 
requires only 4096 z values* compared to 65, 536 z values for method III, we have 
carried out all following calculations with method II. Because the z values are indepen- 
dent of q and K it was only necessary to calculate them once and to store the result on 
tape. For fixed K it is also worthwhile to store away Z@), since the evaluation of the 
complex double-precision exponential in Eq. (2.3) or the corresponding expansion 
takes considerable computer time. 

3. NUMERICAL RESULTS 

In Table III we have listed Q(Q) for various values of N2 between 1 and 20 GeV, 
calculated with our method, the Monte Carlo method [6], the saddle point technique 
[7], and the first three terms of the asymptotic expansion as given by Eq. (A.13) 
(divided by 47r) of [4]. As already explained in the introduction, the Monte Carlo 
calculation is the most reliable at low energies, whereas at high energies the asymptotic 
expansion (because of slow convergence with more than three terms) and/or the saddle 
point result should be taken for comparison. The Fourier transform method works well 
in both regions. This is also confirmed by the coincidence of the results obtained with 
different integration rules. 

Another crucial point in the test of the methods is the calculation of Q(q) with 
qT + 0. As can be seen from Eq. (1.4) this is already needed in the simplest inclusive 
distribution, the single-particle distribution. Moreover, the single-particle distribution 
is of theoretical interest because of its asymptotic scaling properties in the UJM. We 
have, therefore, as a test and as an application, calculated the normalized X, pT2, pL , y, 
and cos 8 single-particle distributions. The connections of these distributions in the 
UJM to the invariant s.p.d. F(Q, p) are 

1 da s(z) 
--= 
utot dx 

m’J2 I dP,eF 
0 PL ’ 

(3.1) 

with 

2Po 
X=s1/2’ PI(X) :x p = (+ 9 - mP)“2, Pdl) = PMAX ; (3.2) 

1 do 
7r 9/* 

1 
--=- 

utot ah* 2 I Z,(z# 
d$ (3.3) 
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with 

with 
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Xl(PT2) = [$ (PT2 + M3y2; 

1 do 9.&.) 
_- = n 
atot ah. s dp$F 

0 PO ’ 

P,(P,) = (P& - PLY; 

1 da e&l) 
-- = * 
otot dv 4, P& 

y=llnPo+PL 112 

2 PO’ 
coshv2 y - m2 ; 

1 da ----.--=,sI = 12 

atot d COS 8 f'dx& 
L Jxo - 

with 

cos e = fi 
P’ 

A further test was the evaluation of sum rules, e.g., for the x distribution 

I l dx da 
$GtdX = CN), 

x0 = g = x,(O). 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

In the calculation of the distributions two points have to be considered: (i) Due to the 
factor l/pL the integrands belonging to the x and pT2 distributions each contain a 
square-root singularity at one end of the integration interval, since the invariant s.p.d. 
F(Q, PI and @Q-P) are not vanishing at the end of the physical region. The singularity 
is integrable.” (ii) The contribution to F(Q, p) coming from the two-particle final state 
is proportional to a 6 function and has to be added separately. It is negligible for 
s112 > 3 GeV, but important at smaller energies. Details are given in the Appendix. 

The integrations in Eqs. (3.5), (3.7), (3.9), and the sum rules were performed with 
the Simpson rule. To obtain the integrals in Eqs. (3.1) and (3.3) the function F was 
interpolated in subintervals with parabolas so that the integration could be done 
analytically. The resulting x distributions were compared to corresponding Monte 
Carlo calculations at s1j2 = 1,3,3.8,4.8, and 20 GeV taken from [4]. We got complete 

8 The singularity in the integrand of Eq. (3.1) could have been avoided by choosingpL as the in- 
tegration variable; however, because of the struct&e of Eq. (2.6) it is preferable for the numerical 
evaluation to take qT as one of the two variables on which KI(Q - q) depends. 
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FIG. 4. The normalized single-particle x distribution multiplied by x at SI/~ = 20 GeV; the points 
are the result of a Monte Carlo calculation, the broken line is the Fourier transform method result. 
For comparison we show the scaling limit curve (solid line). 

coincidence of the curves for s1J2 = 3, 3.8, and 4.8 GeV. At s112 = 1 GeV the two 
calculations agree well for x 5 0.5; for bigger values, where only particle numbers 
for N = 2, 3, or 4 can contribute, the Fourier transform method (FTM) fails. In 
Fig. 4 we show the results of the two methods at 20 GeV. Clearly the FTM is superior 
over the Monte Carlo method (MCM) in this energy range in two respects: it is much 
more accurate and needs much less computation time (10 min for the FTM, 40 hr for 
the MCM on the IBM 370/158 computer). The additional sum rule tests work well, 
e.g., the energy sum rule in Eq. (3.11) is fulfilled to better than 0.5 % for slie > 3 GeV 
and still to 1 % for sliz = 2 GeV. Remember that the energy sum rule is trivial for the 

FIG. 5. The normalized single-particle x distribution multiplied by x at s1i8 = 4.8 GeV calculated 
with the saddle point method (solid line), with the Fourier transform method (broken line) and the 
scaling limit curve (solid line). 
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Frc. 7. The approach of (l/o,,&&/&) to the scaling limit (broken line). The numbers on the 
lines are the slJr values in gigavolt units. 
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MCM, where each event conserves energy, but not for the FTM, where all points are 
calculated independently. We have also checked the saddle point method (SPM) by 
calculating the x distribution at sliz = 4.8 GeV. In Fig. 5 we show the SPM and FTM 
results. As already mentioned in the introduction, the difficulties with the qT # 0 
phase-space volumes in the SPM lead to a wrong single-particle spectrum-the energy 
sum rule has a 25 ‘A error. To test the pT2, pL , y, and cos 13 distributions we have 
produced the corresponding curves with the MCM and with the FTM. We find 
complete coincidence of the curves. 

As an application we have studied the approach of the x and y-distributions to their 
corresponding scaling limits. For x = 0.3,0.5,0.7, and 0.9 we show in Figs. 6a and b 
the dependence of the x distribution on the total C.M.S. energy s1j2 and the conver- 
gence to the limiting x distribution (see [4]). In Fig. 7 we give several y distributions 
for energies between 1 GeV and 40 GeV. The expected limiting plateau height 
r? = TTK/A~ (= 2.942 with our parameter values) is only slowly approached from below. 
So, the UJM, at least with the parameter values of (2.8), leads to a very late scaling 
of the normalized single-particle distribution. 

4. SUMMARY AND OUTLCKIK 

To summarize we can say the following about the Fourier transform method: 

(i) For the calculation of inclusive quantities in the uncorrelated jet model, like 
Q(q) and single-particle spectra, if s112 2 2 GeV the FTM is superior in accuracy 
and/or computing time to the Monte Carlo and saddle point techniques (at least, if all 
particles are pions). 

(ii) At lower energies, when only 2, 3, or 4 particle states can contribute, e.g., at 
the very end of the inclusive x distributions, the FTM is inaccurate. 

(iii) Difficulties may arise in the large pr region (pT 2 4 GeV), which could, 
however, be overcome by taking more integration points than we did. 

(iv) The method can also be applied to other cutoff functions f(pT), or other 
particles than pions. 

In a straightforward manner the FTM can be extended to the case of more than one 
kind of particles. For that purpose one has to compute the different quantities z(m,) 
and to construct a new grand partition function Z. Probably the FTM is the most 
appropriate way to calculate two-particle correlations in the UJM. Since those distri- 
butions are of great interest in the study of possible jet structures in many-particle 
production processes we believe that the FTM will have many applications in the 
future. 
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APPENDIX: TWO-PARTICLE CONTRIBUTIONS TO THE SINGLE-PARTICLE DISTRIBUTION 

To take into account the two-particle final state in Eq. (1.4) the sum in Eq. (1.3) has 
to be supplemented with the N = 1 term 

-A9,T,3(4)(pl _ q), 

so that in Eq. (1.4) we get an extra term 

where 

J-2@, P) = K2e-APT%Q - PNQCQ), 

(A.1) 

(A.21 

l = se -APT&l - x). 64.3) 

Integrating Eq. (A.2) leads, of course, back to the two-particle contribution to (N), 

K”Q(Q> (iv)/,,,= j2F2=-. 
Q(Q) (A-4) 

From Eq. (A.2) the corresponding contributions to the normalized x, pT2, pL , y, and 
cos f3 distributions are then given by 

1 do -_ j = K26(1 - X) $f$ ; 

utot dx 2 

1 da 2 -2Am 
-- = 

*tot dPT2 2 Zslit’(Q) (pz,,: - pT2)l12 ; 

(A.5) 

c4.6) 

1 do n-K2 
-_ = 

atot dy 2 4&?(Q) cosh2 y 
e-2A9&). , (A.7) 

1 do 2 
-- = -2nP,(sL). 

gtot dh 2 29%(Q) e ’ (A.@ 

1 do -- 
utot d cos 8 2 

= 
.$~(Q) Phf~Xe-2AP-sine’ (A.91 

The two-particle phase-space volume can be calculated either by direct numerical 
integration 

Q,(Q) = ?!$&j!? ST” de sin ee-2A”mxsine (A.10) 
0 
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or by evaluation of the series representation [S] 
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